Analyzing degradation data with a random effects spline regression model
نویسندگان
چکیده
منابع مشابه
A Bayesian Nominal Regression Model with Random Effects for Analysing Tehran Labor Force Survey Data
Large survey data are often accompanied by sampling weights that reflect the inequality probabilities for selecting samples in complex sampling. Sampling weights act as an expansion factor that, by scaling the subjects, turns the sample into a representative of the community. The quasi-maximum likelihood method is one of the approaches for considering sampling weights in the frequentist framewo...
متن کاملSpatial Beta Regression Model with Random Effect
Abstract: In many applications we have to encountered with bounded dependent variables. Beta regression model can be used to deal with these kinds of response variables. In this paper we aim to study spatially correlated responses in the unit interval. Initially we introduce spatial beta generalized linear mixed model in which the spatial correlation is captured through a random effect. T...
متن کاملA regression spline model for developmental toxicity data.
Observed dose-response patterns of data from several developmental toxicity experiments appear to be nonlinear and should be characterized by an appropriate model to adequately fit this observed pattern. Information from these animal studies of ambient substances that are noncarcinogenic, yet potentially toxic, to humans is used by federal protection agencies (Environmental Protection Agency, O...
متن کاملBeta - Binomial and Ordinal Joint Model with Random Effects for Analyzing Mixed Longitudinal Responses
The analysis of discrete mixed responses is an important statistical issue in various sciences. Ordinal and overdispersed binomial variables are discrete. Overdispersed binomial data are a sum of correlated Bernoulli experiments with equal success probabilities. In this paper, a joint model with random effects is proposed for analyzing mixed overdispersed binomial and ordinal longitudinal respo...
متن کاملAnalyzing Longitudinal Data Using Gee-Smoothing Spline
This paper considers nonparametric regression to analyze longitudinal data. Some developments of nonparametric regression have been achieved for longitudinal or clustered categorical data. For exponential family distribution, Lin & Carroll [6] considered nonparametric regression for longitudinal data using GEE-Local Polynomial Kernel (LPK). They showed that in order to obtain an efficient estim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quality Engineering
سال: 2017
ISSN: 0898-2112,1532-4222
DOI: 10.1080/08982112.2017.1307390